A comparison of bimolecular reaction models for stochastic reaction-diffusion systems.
نویسندگان
چکیده
Stochastic reaction-diffusion models have become an important tool in studying how both noise in the chemical reaction process and the spatial movement of molecules influences the behavior of biological systems. There are two primary spatially-continuous models that have been used in recent studies: the diffusion limited reaction model of Smoluchowski, and a second approach popularized by Doi. Both models treat molecules as points undergoing Brownian motion. The former represents chemical reactions between two reactants through the use of reactive boundary conditions, with two molecules reacting instantly upon reaching a fixed separation (called the reaction-radius). The Doi model uses reaction potentials, whereby two molecules react with a fixed probability per unit time, λ, when separated by less than the reaction radius. In this work, we study the rigorous relationship between the two models. For the special case of a protein diffusing to a fixed DNA binding site, we prove that the solution to the Doi model converges to the solution of the Smoluchowski model as λ→∞, with a rigorous [Formula: see text] error bound (for any fixed ϵ>0). We investigate by numerical simulation, for biologically relevant parameter values, the difference between the solutions and associated reaction time statistics of the two models. As the reaction-radius is decreased, for sufficiently large but fixed values of λ, these differences are found to increase like the inverse of the binding radius.
منابع مشابه
Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملAnalysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions
A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ–̺ model for irreversible bimolecular reactions which was introduced in [11]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algo...
متن کاملA convergent reaction-diffusion master equation.
The reaction-diffusion master equation (RDME) is a lattice stochastic reaction-diffusion model that has been used to study spatially distributed cellular processes. The RDME is often interpreted as an approximation to spatially continuous models in which molecules move by Brownian motion and react by one of several mechanisms when sufficiently close. In the limit that the lattice spacing approa...
متن کاملStochastic operator-splitting method for reaction-diffusion systems.
Many biochemical processes at the sub-cellular level involve a small number of molecules. The local numbers of these molecules vary in space and time, and exhibit random fluctuations that can only be captured with stochastic simulations. We present a novel stochastic operator-splitting algorithm to model such reaction-diffusion phenomena. The reaction and diffusion steps employ stochastic simul...
متن کاملFluorescence correlation spectroscopy and nonlinear stochastic reaction-diffusion.
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 76 4 شماره
صفحات -
تاریخ انتشار 2014